

Maths Calculation Policy

[^0]
About ouf Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the 'Early Years Foundation Stage' (EYFS) curriculum. This calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

This policy was updated and amended in detail (May 2020) in order to fully reflect the concrete, pictorial and abstract (CPA) approach that we follow in school. The CPA approach is fundamental in providing pupils with a thorough understanding of the calculations they are doing and support our schools journey to provide pupils with an in-depth, mastery approach, to teaching and learning. Many of these examples also derive from the White Rose calculations policy and tie with the White Rose schemes of learning used across the school. Children should have access to a wide range of counting tools and apparatus throughout.

In addition to providing a clear progression of calculations through a CPA approach across the school, this policy also sets out expectations for mathematical reasoning and times table facts across the school (please see the final pages).

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next stage as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real-life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

To work out a tricky calculation:

Approximate, Calculate, Check it mate!

oncenus

Addition
p. 4-10

Subtraction
p. 11-16

Multiplication
p. 17-22

Division
p. 23-28

Key Vocabulary
p. 29-30

Five Steps towards Reasoning
p. 31

Times Table Expectations
p. 32

Times Table certificates
p. 33

Examples of variation within each calculation can also be found on pages 9, 16, 20 and 27

Early Stage Add with two single-digit numbers

Using single digit numbers, children learn to recognise the numbers in a written number sentence or when read aloud by an adult. They might solve the problem with objects. E.g.
$4+5=$

Using single digit numbers, put the first number in your head and count on to find the answer

$$
7+3=
$$

Mental addition:

Children should be able to quickly recall the number one more than any number to 10 and then beyond by the end of this stage.

Stage 1 Add with numbers up to 20

Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on.

Children should:

- Read and write the addition (+) and equals (=) signs within number sentences.
- Interpret addition number sentences and solve missing box problems, using concrete objects and number line addition to solve them: $8+3=0 \quad 15+4=0 \quad 5+3+1=$ - $\quad \mathbf{O}+\mathbf{O}=6$

Further guidance of progress in calculations in these first two stages is shown through the Concrete \rightarrow Pictorial \rightarrow Abstrac \dagger (CPA) progression table on the following page.

Addition

Early Stage and Stage One (continued)

Using the WhiteRose calculation guidance (linked to the scheme followed in school), the following CPA approach should be used at the 'Early Stage' and 'Stage One' in order to ensure a conceptual understanding.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Add 2-digit numbers and tens:
Add 2-digit numbers and ones:

Add pairs of 2-digit numbers, moving to the partitioned column method when secure adding tens and ones: $23+34$:

STEP 1:Only provide examples that do
NOT cross the tens
boundary until they are secure with the

STEP 2: Once children can add a multiple of ten to a 2-digit number mentally (e.g. $80+11$), they are ready for adding pairs of 2-digit numbers that DO cross the tens boundary (e.g. $58+43$).
$58+43:$

STEP 3: Children who are confident and accurate with this stage should move onto the expanded addition methods with 2 and 3-digit numbers (see STAGE 3).

Stage 3 Add numbers with up to 3 -digits

Begin with a CPA approach such as the one in the White Rose calculation guidance:

TO + TO using base 10 . Continue to develop
understanding of partitioning and place value. $36+25$

6

Chidlren to represent the base 10 in a place value chart.

$10 s$	$1 s$
111	\ldots
11	1
	6

Looking for ways to make 10
 $50+10+1=61$
1536
Formal method:
$+25$
$\frac{61}{1}$

Stage 4 onwards

In addition to challenge through larger numerals, ensure challenge and mastery are developed through 'variation' in the way addition problems are presented from here onwards.

The decimal point should be aligned in the same way as the other place value columns, and must be in the same column in the answer.

Numbers should exceed 4 digits.

Pupils should be able to add more than two values, carefully aligning place value columns.

Stage 6 Add several numbers of increasing complexity

Adding several numbers with different numbers of decimal places (including money and measures):

- Tenths, hundredths and thousandths should be correctly aligned, with the decimal point

Empty decimal places can be filled with zero
to show the place value in each column.

Extend by adding several numbers with more than 4 digits.

81,059
3,668
15,301
$+20,55$
20,579

Pupils should also be able to perform mental calculations including with mixed operations and with larger numbers.

Stage 1 Subtract from numbers up to 20

Children consolidate understanding of subtraction practically, showing subtraction
 more formal recording including recording on a number line once secure
with the practical concept of subtraction. A clear sequence through a concrete (practical),pictorial and abstract approach to subtraction in the early stage and stage one is shown on the next page.

Mental subtraction

Children should start recalling subtraction facts up to and within 10 and 20 by the end of this stage, and should be able to subtract zero.

Subtraction

Early Stage and Stage One (continued)

Using the White Rose calculation guidance (aligned to the scheme followed in school), the following CPA approach should be used at the 'Early Stage' and 'Stage One' in order to ensure a conceptual understanding.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Q இ®O	4-3 $=$
Counting back (using number lines or number tracks) children start with 6 and count back 2 . $6-2=4$	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10 using ten frames. 14-5	Children to present the ten frame pictorially and discuss what they did to make 10 .	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

Stage 3 Subtracting with 2 and 3-digitnumbers.

Introduce partitioned column subtraction method.
Step 1: Begin with a CPA approach for a calculation where no 'exchanging' is required e.g.:

Column method using base 10 .
48-7

Children to represent the base 10 pictorially.

Column method or children could count back 7 .

$$
\begin{array}{r}
48 \\
-\quad 7 \\
\hline 41
\end{array}
$$

Stage 3 (cont) Subtracting with 2 and 3 -digitnumbers.

STEP 2: introduce 'exchanging' through practical subtraction. Make the larger number with Base 10, then subtract 47 from it.

When learning to 'exchange', explore 'partitioning in different ways' so that pupils understand that when you exchange, the VALUE is the same ie $72=70+2=60+12=$ $50+22$
etc. Emphasise that the value hasn't changed, we have just partitioned it in a different way.

Represent the base 1-0 pictorially, remembering to show the exchange

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of 10 for ten ones. Then

STEP 3: Once pupils are secure with the understanding of 'exchanging', they can use the partitioned column method to subtract any 2 and 3-digit numbers.

Counting on as a mental strategy for subtraction:

Continue to reinforce counting on as a strategy for close-together numbers (e. g. 121-118), and also for numbers that are 'nearly' multiples of $10,100,1000$ or $£ s$, which make it easier to count on (e.g. 102-89, 131-79, or calculating change from $£ 1$ etc.).

- Start at the smaller number and count on in tens first, then count on in ones to find the rest of the difference:

A CPA approach at stage three may look like...

Column method using place value counters.
234-88

Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal colum method. Children must understand what has happened when they have crossed out digits.

$$
23^{2} 4
$$

$\begin{array}{r}-88 \\ -6 \\ \hline\end{array}$

Stage 5 Subtract with at least 4-digit numbers
 5 Subtract with at least 4-digit numbers

including money, measures, decimals.
Compact column subtraction (with 'exchanging').
Subtracting with larger integers.

Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?

Calculate the difference between 391 and 186.

Stage 1 Multiply with concrete objects, arrays and pictorial

 representations.How many legs will 3 teddies have?

There are 3 sweets in one bag. How many sweets are in 5 bags altogether?

$$
3+3+3+3+3=15
$$

- Give children experience of counting equal group of objects in $2 s, 5 s$ and $10 s$.
- Present practical problem solving activities involving counting equal sets or groups,

Early Stage into stage 2 steps through the Concrete, Pictorial and Abstract

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$

Stage 2 Multiply using arrays and repeated addition (using at least 2s, 5s and 10s)

Use repeated addition on a number line:
Starting from zero, make equal jumps up on a number line to work out multiplication facts and write multiplication statements using x and $=$ signs.
Use practical apparatus and a CPA approach

$4 \times 5=20$

objects can also be used.
$2 \times 5=5 \times 2$

2 lots of 5

5 lots of 2

Children to represent the arrays pictorially.

Children to be able to use an array to write a range of calculations e.g.
$10=2 \times 5$
$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$

Use mental recall:

- Children should begin to recall multiplication facts for 2,5 and 10 times tables through practice in counting and understanding of the operation.

Multiplication

Stage 3 Multiply 2-digits by a single digit number

Begin with objects then record pictorially before more abstract recording (see below the

(examples from the White Rose calculations policy)

Introduce the grid method for multiplying 2-digit by single-digits:
Link the layout of the grid to an array initially:

Eg. $\quad 23 \times 8=184$

X	20	3
8	160	24

Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10 s and 1s place value counters), then translate this to grid method format
$160+24=184$

Formal column method with place value counters
(base 10 can also be used.) 3×23

Children to record what it is they are doing to show understanding
$3 \times 23 \quad 3 \times 20=60$
$\begin{array}{rl}1 \backslash & 3 \times 3=9 \\ 20 & 60+9=69\end{array}$
23
$\begin{array}{r}\mathbf{2 3} \\ \times \quad 3 \\ \hline 69\end{array}$

Multiplication

Stage 4 Multiply 2 and 3-digits by a single digit, using all

 multiplication tables up to 12×12Review and extend the Concrete, Pictorial and Abstract (CPA) approach used in stage 3, as exampled below from the White Rose Calculation Policy. Apply this to three-digit numbers.

Children to represent the counters/base 10, pictorially e.g. the image below.

$6 \times 23=$

23
$\times \quad 6$
138
11

Eg. $136 \times 5=680$

X	100	30	6
5	500	150	30

 accurate in multiplying 2 and 3 -digit numbers by a single digit this way, and are already confident in 'exchanging' for written addition.

Variation in Multiplication

Children should be given frequent opportunities for variation in how problems are presented or, in how they may be expected to solve them. An ability to solve problems in a variety of ways develops Maths Mastery.
These examples are taken from the White Rose calculation policy showing different ways to ask children to solve 6×23 (but is equally applied to larger values):

23	23	23	23	23	23		
$?$							Mai had to swim 23 lengths, 6 times a
:---							
week.							
How many lengths did she swim in one							
week?							
With the counters, prove that $6 \times 23=138$							

Find the product of 6 and 23
$6 \times 23=$
$\times 2 \times 23$
$\times \quad \times 23$

What is the calculation?
What is the product?

100s	10s	1s
	$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 08 \\ & \hline 8 \end{aligned}$	

Introduce long multiplication for multiplying by 2 digits

Pupils could be asked to work out a given calculation using the grid, and then compare it to 'your' column method. What are the similarities and differences? Unpick the steps and show how it reduces the steps. needed.

The grid could be used to introduce long multiplication, as the relationship can be seen in the answers in each row.

Moving towards more complex numbers

Children will be able to:

- Use rounding and place value to make approximations before calculating anduse these to check answers against.
- Use short multiplication (see stage 5) to multiply numbers with more than 4digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.
- Use long multiplication (see stage 5) to multiply numbers with at least 4 digits by a 2 -digit number.

Stage 1 Group and share small quantities

Using objects, diagrams and pictorial representations to solve problems involving both grouping and sharing.

How many groups of 4 can be made with 12 stars? $=3$

Grouping:

Sharing:

12 shared between 3 is 4

Pupils should :

- use lots of practical apparatus, arrays and picture representations
- Be taught to understand the difference between 'grouping' objects (How many groups of 2 can you make?) and 'sharing' (Share these sweets between 2 people)
- Be able to count in multiples of $2 s, 5 s$ and $10 s$.
- Find half of a group of objects

Stage 3 Divide 2-digit numbers by a single digit (where there is no remainder in the final answer)

$2 \mathrm{~d}+1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.
Sharing using place value counters.
$42 \div 3=14$
000000

10s	is

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4, with 1 left over'

Children to be able to make sense of the
place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Grouping on a number line:

STEP 1: Children continue to work out unknown division facts by grouping on a number line from zero. They are also now taught the concept of remainders, as in the example. This should be introduced practically and with arrays, as well as being translated to a number line. Children should work towards calculating some basic division facts with remainders mentally for the $2 s, 3 s, 4 s, 5 s, 8 s$ and $10 s$, ready for 'exchanging' remainders across within the short division

Short division: Limit

numbers to NO remainders in the answer OR carried (each digit must be a multiple of the

STEP 2: Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.
Remind children of correct place value, that 96 is equal to 90 and 6, but in short division, pose:

- How many 3's in 9? = 3, and record it above the 9 tens.
- How many 3's in 6 ? $=2$, and record it above the 6 ones.

They could first be asked to use a number line to work this out, highlighting the

Short division: Limit numbers to NO remainders in the final answer, but with remainders occurring within the calculation to be carried to the next digit.

18
$4 \longdiv { 7 ^ { 8 } 2 }$

STEP 3: Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. $96 \div 4$), and be taught to 'carry' the remainder onto the next digit. If needed, children should use the number line to work out individual division facts that occur which they are not yet able to recall mentally.

Real life contexts need to be used routinely to help pupils gain a full understanding, and the ability to recognise the place of division and how to apply it to problems.

Stage 4 Divide up to 3-digit numbers by a single digit (without remainders initially)

Short division using place value counters to group. $615 \div 5$

Represent the place value counters pictorially.

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

-

Short division should only be taught once children have secured the skill of calculating

STEP 1: Pupils must be secure with the process of short division for dividing 2-digit numbers by a single digit (those that do not result in a final remainder see steps in STAGE 3), but must understand how to calculate remainders, using this to 'carry' remainders within the calculation process (see example).

Continue to develop short division:

Stage 5 Divide up to 4 digits by a single digit, including those with remainders.

Short division, including remainder answers:

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

The answer to $5309 \div 8$ could be expressed as 663 and five eighths, 663 r5 , as a decimal, or rounded as appropriate to the problem involved.

Variation in Division

Children should be given frequent opportunities for variation in how problems are presented or, in how they may be expected to solve them. An ability to solve problems in a variety of ways develops Maths Mastery.
These examples are taken from the White Rose calculation policy showing different ways to ask children to solve 615/5 (but is equally applied to larger values):

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What is the calculation?
What is the answer?

Stage 6 Divide at least 4 digits by both single-digit and 2-digit

numbers (including decimal numbers and quantities)
Long division using place value counters
$2544 \div 12$

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remainder.

Short division, for dividing by a single digit: e.g. $6497 \div 8$

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

Calculating a decimal remainder: In this example, rather than expressing the remainder as $\boldsymbol{r} \mathbf{1}$, a decimal point is added after the ones because there is still a remainder, and the one remainder is carried onto zepos after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

The following acronym may help with remembering which steps to take in long division problems

Key Vocabulary

Within each stage, children should always be taught to extend earlier vocabulary with the additional vocabulary related to their stage.

Addition

| Early |
| :--- | :--- |
Stage		add, one more, count, more, plus, and, make, altogether, total,		
equal to, equals, double, most, count on, number line	$	$	Stage	
:---	:---			
One	Use and apply language from the Early Stage in a range of con- texts			
Stage	sum, tens, ones, partition, addition, column, tens boundary			
Two				
Stage				
Three	hundreds boundary, increase, vertical, carry, expanded, com- pact			
Stage Four	thousands, hundreds, digits, inverse			
Stage Five	decimal places, decimal point, tenths, hundredths, thousandths			
Stage	Use and apply language from stage five in a range of contexts.			
Six				

Subtraction

Early Stage	Take, take away, less, minus, subtract, leaves, most, least, count back, how many left?
Stage	Equal to, distance between, how many more, how many fewer /
One	less than, how much less is_?
Stage	difference, count on, strategy, partition, tens, ones
Two	
Stage	exchange, decrease, hundreds, value, digit
Three	
Stage Four	inverse
Stage Five	tenths, hundredths, decimal point, decimal
Stage	Use and apply language from stage five in a range of contexts.
Six	

Key Vocabulary

Within each stage, children should always be taught to extend earlier vocabulary with the additional vocabulary related to their stage.

Multiplication

Early Stage	double, count, altogether, two groups, twice, the amount same again, repeat, more, patter
Stage One	groups of, lots of, times, array, altogether, multiply, count
Stage Two	multiplied by, repeated addifion, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times..
Stage Three	partition, grid method, multiple, product, tens, ones, value
Stage Four	inverse
Stage Five	square, factor, integer, decimal, short/long multiplication, 'carry
Stage Six	tenths, hundredths, decimal

Division

Early Stage	Share, share equally, one each, two each..., half, split, same, fair, even, halving, sharing
Stage One	Share, share equally, one each, two each..., group, groups of, lots of, array
Stage Two	divide, divided by, divided into, division, grouping, number line, left, left over
Stage Three	inverse, short division, 'carry, remainder, multiple
Stage Four	divisible by, factor
Stage Five	quotient, prime number, prime factors, composite number (non- prime)
Stage Six	common factor

The following steps towards reasoning have been taken from the NRICH article: Reasoning: the Journey from Novice to Expert.

Step one: Describing: simply tells what they did.
Step two: Explaining: offers some reasons for what they did. These may or may not be correct. The argument may yet not hang together coherently. This is the beginning of inductive reasoning.

Step three: Convincing: confident that their chain of reasoning is right and may use words such as, 'I reckon' or 'without doubt'. The underlying mathematical argument may or may not be accurate yet is likely to have more coherence and completeness than the explaining stage. This is called inductive reasoning.

Step four: Justifying: a correct logical argument that has a complete chain of reasoning to it and uses words such as 'because', 'therefore', 'and so', 'that leads to' ...

Step five: Proving: a watertight argument that is mathematically sound, often based on generalisations and underlying structure. This is also called deductive reasoning.
https://nrich.maths.org/11336?fref=gc\&dti=784198881679399

Opportunities for reasoning should be made possible throughout all work on calculations. Consequently, these steps have been added to this calculation policy and are expected as a part of teaching and learning. By the end of Year 6 children should be working at at least Stage 4 for 'Greater Depth'.

'By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.'

National Curriculum, 2014
The requirements for Year groups are as follows:
Year 1 - counting in $2 s, 5 s$ and $10 s$
Year 2 - recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers

Year 3 - recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables

Year 4 -recall multiplication and division facts for multiplication tables up to 12×12

Year 5 - they apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.

In this calculations policy, year groups are referred to as 'stages'. This is because it is important that children are confident working at each stage before moving on. However, the National Curriculum provides expectations for pupils at the end of each year group (as above for times tables).

Times tables tests will be carried out weekly from Year 2 onwards.

The learning of times tables should be part of lessons as appropriate, but also encouraged at home.

Times tables are taught/tested in the following order:
$2,10,5,3,11,9,4,8,6,7,12$

The test should be applied using the school format. Children must know the number facts by rote and should not be given time in the test to use other mental calculation strategies. Once they have successfully scored $12 / 12$ in a test on 3 occasions they can move to the next one. After completing all 12 times tables, the children will have a weekly sheet that tests all multiplication and division facts within them.

To motivate the children to learn their multiplication tables an award system has been designed. This involves levels of progression linked to medal certificates.

* Bronze Award: Completed 2's, 5's and 10's
* Silver Award: Completed 3's, 4's, 9's and 11's
* Gold Award: Completed 6's, 7's, 8's and 12's

[^0]: This policy is largely drawn from the calculations policy of Fynamore Primary compiled by Rosie Pritchard and Alex Winchcombe @ Fynamore
 With additional thanks to St Andrew's Primary School, the WhiteRose maths hub and the NCTEM for some of the images and words used in this document-

